University of Minnesota Driven to Discover
U of MNUniversity of Minnesota
Center for Transportation Studies

Understanding Use of Non-Motorized Transportation Facilities - FY10 TechPlan

Principal Investigator:

Greg Lindsey, Professor, Humphrey School of Public Affairs

Project Summary:

Federal, state, and local transportation policymakers and managers need information about the use of bicycle and pedestrian infrastructure to inform decision making. But traffic counts and models for describing use of non-motorized facilities such as sidewalks, bike lanes, and trails are generally unavailable. Because transportation officials lack the data and tools needed to estimate use of facilities, their ability to make evidence-based choices among investment alternatives is limited. This project assesses manual and automated methods of counting non-motorized traffic; summarizes counts of cyclists and pedestrians in Minneapolis, Minnesota; develops scaling factors to describe temporal patterns in non-motorized traffic volumes; validates models for estimating traffic using ordinary least squares and negative binomial regressions; and estimates bicycle and pedestrian traffic volumes for every street in Minneapolis. Research shows that automated counters are sufficiently accurate for most purposes. Automated counter error rates vary as a function of type of technology and traffic mode and volume. Across all locations, mean pedestrian traffic (51/hour) exceeded mean bicycle traffic (38/hour) by 35 percent. One-hour counts were highly correlated with 12-hour "daily" counts. Significant correlates of non-motorized traffic vary by mode and include weather (temperature, precipitation), neighborhood socio-demographics (household income, education), built environment characteristics (land use mix), and street (or bicycle facility) type. When controlling for these factors, bicycle traffic, but not pedestrian traffic, increased over time and was higher on streets with bicycle facilities than without (and highest on off-street facilities). These new models can be used to estimate non-motorized traffic where counts are unavailable and to estimate changes associated with infrastructure improvements.


Project Details:

Reports or Products: