Labs and Facilities

Minnesota Traffic Observatory
www.mto.umn.edu

Staff
John Hourdos, Director
Ted Morris, Lab Manager
Chen-Fu Liao, Educational Systems Engineer

Purpose
The Minnesota Traffic Observatory (MTO), a joint effort of the ITS Institute and the Department of Civil Engineering, supports a wide range of research in safety, monitoring, management, and simulation of traffic systems. The observatory combines real-time traffic data with state-of-the-art simulation systems, giving researchers and engineers the ability to analyze existing conditions and compare real-world observations with the results of simulated conditions.

Research Focus
MTO research focuses on testing and evaluating new transportation management and operational strategies and traveler information technologies. Specific focus areas include traffic data collection, microscopic simulation, traffic model calibration, and incident detection and prevention.

Recent Projects
- A Predictive Study of Use Impacts on the Denali Park Road
- Bus Signal Priority Based on GPS and Wireless Communications
- Enhanced Micro-Simulation Models for Accurate Safety Assessment

MTO lab manager Ted Morris, researcher and professor Gary Davis, and MTO director John Hourdos, pictured with a portable traffic data collection station. Video footage collected for a study on roundabouts is shown in the background.
• Investigation of Pedestrian/Bicyclist Risk in Minnesota Roundabout Crossings
• Identification and Simulation of Common Freeway Accident Mechanisms
• Portable, Nonintrusive Advance Warning Devices for Work Zones With or Without Flag Operators
• Vehicle Probe-Based Real-Time Traffic Monitoring on Urban Roadway Networks

Capabilities
The MTO offers researchers the ability to study large traffic systems where many different parts interact. Video feeds flow into the observatory from an extensive network of traffic cameras. The observatory is connected by fiber-optic lines to the Minnesota Department of Transportation’s Regional Traffic Management Center, allowing the MTO to capture up to 16 live feeds at a time from any of the 400 cameras the agency uses to monitor the metropolitan freeway system. In addition, the observatory operates a dedicated system of cameras overlooking the I-94/I-35W Commons interchange in Minneapolis—turning one of the most crash-prone intersection areas in the state into a real-world laboratory for the study of traffic flows and vehicle crashes. Finally, the MTO has developed expertise in the deployment of portable traffic data stations. The MTO currently has five such stations capable of deploying a 28-foot mast virtually anywhere there is a light pole or traffic light and mounting on it traffic data-collection devices such as cameras or radar.

The availability of a wealth of high-quality video data is ideal for the use of machine-vision systems to monitor and categorize vehicle movements. Computer image-processing algorithms developed by University of Minnesota researchers enable the observatory to track and analyze complex traffic patterns at intersections, on freeway interchanges, and in other areas that are difficult to study using other data sources.

Another key component of the MTO is a virtual traffic control center and simulation lab. Interfacing traffic signal control hardware with realistic traffic network models creates a powerful hardware-in-loop simulation tool for examining system performance under a variety of conditions.

Several traffic simulation packages are used in the MTO, primarily AIMSUN-NG for “microscopic” simulation based on individual vehicles and the KRONOS 9 package, developed at the University of Minnesota, for macroscopic (platoon-based) simulations.

Given the complexity of the traffic issues that the observatory is designed to study, robust visualization tools are critical. In addition to a large projection wall, two innovative pieces of equipment provide researchers with powerful interactive visualization capabilities.

The GIS/MAP table combines the large horizontal working surface of a traditional drafting table with the interactive capabilities of geographic information systems technology. Two ceiling-mounted digital projectors create a seamless image covering the entire conference-table-sized surface, which can be manipulated using a tabletop pointing device to pan and zoom in on specific areas. In contrast to traditional ways of viewing digital maps and models on a desktop monitor, the table allows users to comfortably survey the entirety of a large traffic system and quickly focus in on areas of interest.

The DEN (Digital Immersive ENvironment) is a high-fidelity 3-D interactive immersive display system that allows researchers to observe and explore traffic flow scenarios within any environmental context and from any fixed or moving perspective. Three sides of the cubic structure are formed by large rear-projection screens presenting polarized images from two slightly different sources; a user wearing specially designed glasses sees a different image with each eye, producing a realistic sense of three-dimensional space. A tracking system mounted in the DEN’s ceiling monitors the position of the user’s head and adjusts each projector to provide an accurate perspective.
Purpose
The Intelligent Vehicles Laboratory (IV Lab) develops and tests innovative, human-centered technologies that improve the operational safety, mobility, and productivity of the transportation network in general, and highway vehicles in particular. These human-centered technologies integrate sensors, actuators, computer processors, and custom human interfaces to provide drivers with needed information under difficult driving conditions such as low visibility, severe weather, and narrow and congested roadways.

Although the IV Lab is focused primarily on vehicles, it also considers the roadway, supporting infrastructure, and electronic wireless communication as part of the transportation network and uses all of these elements in generating solutions to transportation problems.

Research Focus
The University of Minnesota is recognized as a leader in developing and testing driver-assist systems and is one of a small number of universities nationwide conducting this work. Current research topics include the design and testing of custom human interfaces, technologies to assist and monitor inexperienced teen drivers, collision-avoidance sensors and algorithms, intersection surveillance systems, and wireless communication (vehicle-vehicle and vehicle-infrastructure).

Recent Projects
• Advanced Bus Rapid Transit: Innovative Technologies for Dedicated Roadways
• Infrared Sensing for Driver-Assist Systems
• Multiuse, High-Accuracy, High-Density Geospatial Databases
• In-Vehicle Driver Assistance for Teenagers

Outreach and Education
The MTO is dedicated to supporting transportation education at the University. MTO facilities are used by faculty and students in civil, mechanical, and electrical engineering, computer science, and affiliated disciplines, and MTO staff work with faculty to develop interactive laboratory modules that help students understand advanced topics in traffic management. The MTO also hosts training events for transportation professionals, covering topics such as the effective use of traffic simulations for capacity analysis and planning.

Partners
• U.S. Department of Transportation
 • Federal Highway Administration
 • Research and Innovation Technology Administration
• Minnesota Department of Transportation
• University of Vermont
• National Park Service
• Next Generation Simulation (NGSIM) Community
• Other local and regional agencies

Intelligent Vehicles Laboratory
www.ivlab.umn.edu | www.bus2.me.umn.edu

Staff
Craig Shankwitz, Director
Pi-Ming Cheng, Research Associate
Eddie Arpin, Research Fellow
Alec Gorjestani, Research Fellow
Arvind Menon, Research Fellow
Bryan Newstrom, Research Fellow
Erin Kurshoff, Principal Accounts Specialist

Go to website for more about the IV Lab
• Motorcycle Riding Impairment at Different BAC Levels
• Guidance Augmentation for Transit Applications
• GPS Augmentation for Robust Lane Assistance
• Analysis of Highway Design and Geometric Effects on Crashes
• Urban Partnership Agreement: Deployment of Driver-Assist Systems for Bus-only Shoulders

Capabilities
IV Lab research focuses on increasing driver safety in difficult driving conditions through the use of vehicle-guidance and collision-avoidance technologies. Several vehicles serve as experimental testbeds for these technologies, including two passenger cars, the SAFEPLOW (an International 2540 crew-cab snowplow), a state highway patrol car, and a Minnesota Valley Transit Authority (MVTA) bus used for transit research. Using these vehicles, IV Lab researchers are developing, testing, and integrating advanced technologies, including:
• Centimeter-level differential global positioning systems (DGPS)
• High-accuracy digital-mapping systems
• Range sensors, including radar and laser-based sensors
• A head-up display (HUD), virtual rear-view mirror, and other graphical displays
• Haptic and tactile feedback

The IV Lab’s partnership with MnDOT provides access to roads and other infrastructure, including the Minnesota Road Research Project (MnROAD) test track, which consists of a freeway and a low-volume road pavement test track with 40 different road material test sections, 4,500 electronic sensors, a weigh-in-motion scale, a weather station, and DGPS correction signals.

The core staff of the IV Lab consists of engineering professionals who work closely with an interdisciplinary team of specialists, including cognitive psychologists specializing in human factors from the ITS Institute’s HumanFIRST Program. The staff has expertise in wireless communications, embedded computing, visibility measurement and quantification, geospatial databases, virtual environments, image processing, driver-assist technologies, control systems, and sensors.

Partners
• U.S. Department of Transportation
 • Federal Highway Administration
 • Federal Transit Administration
 • Research and Innovative Technology Administration
• Minnesota Department of Transportation
• Minnesota Local Road Research Board
• Hennepin County
• Minnesota Valley Transit Authority
• Twin Cities Metro Transit
• Alaska Department of Transportation and Public Facilities
• Other local and regional agencies

Technologies developed at the IV Lab help Bus 2.0 drivers navigate narrow shoulders.
HumanFIRST Program
www.humanfirst.umn.edu

Staff
Michael Manser, Director
Ensar Becic, Research Associate
Janet Creaser, Research Fellow
Peter Easterlund, Simulator Manager
Justin Graving, Research Fellow
Chris Edwards, Research Fellow
Robyn Woollands, Research Assistant

Purpose
The Human Factors Interdisciplinary Research in Simulation and Transportation (HumanFIRST) Program applies human factors principles to improve scientific understanding of driver behavior and supports the design and evaluation of usable intelligent transportation systems.

Research Focus
As implied by its name, the program’s research strategy is based on a driver-centered approach, considering the “human first” within the transportation system. Research seeks to propose, design, and evaluate innovative methods to improve transportation safety based on a scientific understanding of driver performance and the psychological processes associated with traffic crashes. It considers how a driver will accept and use a proposed system while also considering the possibility of its producing undesirable driver responses and adaptation (e.g., distraction, complacency, fatigue, risk-taking). Specific research topics include:
- Driver distraction from in-vehicle tasks and cell phones
- Driver-assist systems to reduce teen-driver-related fatal crashes
- Rural and urban driver attitudes and crash risk
- Interventions for crash reduction at rural intersections
- Intelligent driver-support technologies such as vision-enhancement, collision-avoidance, hazard-awareness, and lane-keeping systems for passenger and special-purpose vehicles
- Alcohol impairment, including motorcycle safety

Recent Projects
- Smartphone-Based Novice Teenage Driver Support System
- Vehicle-Based Teen Driver Support Systems
- Fuel Economy Display Design and Assessment
- Technology for Transit: Lane Guidance for Shoulder-running Buses
- CICAS Stop Sign Assist (SSA) System
- Motorcycle Riding Impairment at Different BAC (Blood Alcohol Concentration) Levels

Capabilities
The centerpiece of the facility is a state-of-the-art driving simulator engineered specifically for human factors
research in surface transportation. This versatile simulator consists of a full-cab Saturn SC2 vehicle and software capable of creating virtual environments that precisely reproduce any geospecific location. In addition, specialized visual-effect software can produce realistic weather and lighting—including light and shadow that correspond with season and time of day—as well as vehicle headlights with nighttime glare and water reflections.

The visual environment is generated with high-resolution images (1.97 arcmin per pixel) over a wide field of view (FOV): 210-degree forward field of view, 50-degree rear FOV, and two 20-degree FOV side mirror images. This immersive driving experience is enhanced by realistic motion generated by a three-axis motion base and both high- and low-frequency vibration units, including a surround-sound system. With multiple sound systems, configurable touch panel displays (including head-up displays), haptic feedback through the seat and accelerator pedal, and a head-free eye-tracker that can detect in real time what a driver is looking at, this simulator supports the investigation of a wide range of interface options for ITS development, design, and assessment. These features make it one of the premier driving simulators in North America and Europe.

The HumanFIRST Program also has access to a new bus driving simulator installed at the Minnesota Valley Transit Authority garage, where program staff can test and evaluate bus driver-support systems and bus driver training protocols. Additionally, for real-world testing and validation, the program has access to a variety of test track and operational research settings in which participants can drive the program’s fleet vehicles in a wide range of normal driving situations.

The HumanFIRST facility includes equipment for basic research on driver psychological functioning including a vision tester, DOT-certified breath alcohol analyzer, mobile psychophysiological recording system, mobile eye-tracking system, video editing and behavior analysis suite, and a comprehensive psychometric test battery validated for traffic psychology. A strength of this equipment is that it can be employed in the driving simulator, test track, or on-road research facilities.

The program’s core staff of transportation research specialists, made up of psychologists and engineers, provides a well-established base of content expertise. This core group is linked to a broad interdisciplinary network of experts in advanced, basic, and applied sciences throughout the University to provide a flexible and comprehensive research capacity. This network is supported by affiliations with additional University research units, which allows the program to create interdisciplinary teams to investigate a range of complex human factors research issues in transportation safety.

The program has close relationships with the Minnesota Departments of Transportation and Public Safety, private industry, traffic engineering consultants, and other related entities. These connections provide support for implementing research that will influence transportation policy in response to real-world problems both regionally and nationally. In addition, to ensure that research takes into account developments on the world stage, the program’s work is supported by international collaborations with experts in relevant disciplines.

Partners
- United States Department of Transportation
 - Federal Highway Administration
 - National Highway Traffic Safety Administration
 - Research and Innovative Technology Administration
- Minnesota Department of Transportation
- Minnesota Local Road Research Board
- Minnesota Valley Transit Authority
- Other local and regional agencies
Northland Advanced Transportation Systems Research Laboratories
www.its.umn.edu/ProgramsLabs/NATSRL

Staff
Eil Kwon, Director
Lori Johnson, Accountant

Purpose
The Northland Advanced Transportation Systems Research Laboratories (NATSRL), founded in 2000, is a faculty-based transportation research program at the University of Minnesota Duluth (UMD). The primary mission of NATSRL is to develop innovative technologies that can be directly applicable in making the transportation systems in northern areas safe, efficient, and sustainable.

Research Focus
The current research focus areas in NATSRL include:
- Advanced sensing technologies for detecting and measuring traffic, driver, pedestrian, and pavement condition
- Traffic and driver safety technologies through vehicle and infrastructure integration with wireless communication
- Winter road snow and ice management decision-support strategies
- Advanced traffic operations and management strategies under various traffic and weather conditions

Recent Projects
- Carbon-nanotube-based intelligent concrete pavement for traffic detection
- A non-intrusive sensing system to detect driver drowsiness
- A snow and ice detection system for bridge decks and road surfaces with time domain reflectometry (TDR) technology
- Traffic detection and monitoring based on customized vision-processing hardware
- A realistic snow-rendering graphic simulation model used to visualize and assess the effects of alternative snowplow lighting and coloration designs
- A dedicated short-range communications (DSRC)-based driver information system for work zones
- A hydrogen-gas-based alternative power system for operating ITS devices
- A robotic painter for pavement markings
- An infrared thermal-camera-based deer detection system with automatic tracking
- A decision-support system for proactive deployment of ITS safety strategies
- A road-departure warning system with automatic identification of vehicle location

Capabilities
All research projects supported by NATSRL are performed at individual departments at UMD. The common research facilities, which can be shared by researchers, include a
driving simulator and an outdoor laboratory where new prototype detection systems for traffic, snow, and ice are utilized for various studies. NATSRL has also been developing cooperative research activities in transportation with foreign research institutes and universities. These include a visiting researcher and graduate student exchange program and joint research projects. Currently one international graduate student is working at NATSRL as a visiting scholar.

Partners

NATSRL has formed a partnership with its key stakeholders by developing a Research Advisory Panel (RAP) and Advisory Board structure whose membership includes experts from the following partnership agencies:

- Minnesota Department of Transportation
- St. Louis County, Minnesota
- City of Duluth, Minnesota

The RAP, which meets every semester, plays a major role in managing and guiding NATSRL research activities. Further, it has been working as the ongoing communication channel between NATSRL faculty and local transportation practitioners by addressing the research needs from the field as well as the needs of the researchers in terms of data and testing platforms. The strategic directions and the yearly research programs of NATSRL are discussed and finalized at the annual Advisory Board meeting.