FY10 ITS Institute research projects

Projects are listed under their corresponding research category and alphabetically by principal investigator. Project summaries and additional information for each research project listed in this section are online on the ITS Institute’s Web site at www.its.umn.edu/Research.

Human Performance and Behavior

<table>
<thead>
<tr>
<th>Project</th>
<th>Principal Investigators</th>
<th>Department(s)</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-Vehicle Decision Support to Reduce Crashes at Rural Thru-Stop Intersections</td>
<td>Caroline Hayes, Department of Mechanical Engineering</td>
<td>Engineering (Duluth)</td>
<td>In progress</td>
</tr>
<tr>
<td>Usable and Effective Haptic Interfaces for In-Vehicle Decision Support</td>
<td>Caroline Hayes, Department of Mechanical Engineering</td>
<td>Engineering (Duluth)</td>
<td>New</td>
</tr>
<tr>
<td>Speed Impacts of Occasional Hazard Residential Street Warning Signs</td>
<td>Keith Knapp, formerly, Humphrey Institute of Public Affairs</td>
<td>Engineering (Duluth)</td>
<td>In progress</td>
</tr>
<tr>
<td>Requirements for Effective Fuel Economy Displays for Improving Fuel Economy and Safety</td>
<td>Michael Manser, Department of Mechanical Engineering, and Michael Rakauskas, formerly, Department of Mechanical Engineering</td>
<td>Engineering (Duluth)</td>
<td>In progress</td>
</tr>
<tr>
<td>Speed and Distance of Computing, Sensing, Communications, and Control Systems</td>
<td>Jinn-Shiou Yang, Department of Electrical and Computer Engineering (Duluth)</td>
<td>Engineering (Duluth)</td>
<td>New</td>
</tr>
<tr>
<td>Real-time Non-intrusive Detection of Driver Drowsiness (Phase I)</td>
<td>Xun Yu, Department of Mechanical and Industrial Engineering (Duluth)</td>
<td>Engineering (Duluth)</td>
<td>Complete</td>
</tr>
<tr>
<td>Real-time Non-intrusive Detection of Driver Drowsiness (Phase II)</td>
<td>Xun Yu, Department of Mechanical and Industrial Engineering (Duluth)</td>
<td>Engineering (Duluth)</td>
<td>In progress</td>
</tr>
<tr>
<td>Infrared Thermal Camera-Based Real-Time Identification and Tracking of Large Animals to Prevent Animal-Vehicle Collisions (AVCs) on Roadways</td>
<td>Xun Yu, Department of Mechanical and Industrial Engineering (Duluth)</td>
<td>Engineering (Duluth)</td>
<td>New</td>
</tr>
<tr>
<td>An Evaluation of a Prototype Safe Teen Car</td>
<td>Michael Manser and Craig Shankwitz, Department of Mechanical Engineering</td>
<td>Engineering (Duluth)</td>
<td>In progress</td>
</tr>
<tr>
<td>Warning Efficacy of Active Versus Passive Warnings for Unsignalized Intersection and Mid-Block Pedestrian Cross-Walks</td>
<td>Thomas Smith, Department of Kinesiology, and Nikolaos Papanikolopoulos, Department of Computer Science and Engineering</td>
<td>Engineering (Duluth)</td>
<td>New</td>
</tr>
<tr>
<td>Detection of Water and Ice on Bridge Structures by AC Impedance and Dielectric Relaxation Spectroscopy (Phase I)</td>
<td>John Evans, Department of Chemistry and Biochemistry (Duluth)</td>
<td>Engineering (Duluth)</td>
<td>Complete</td>
</tr>
<tr>
<td>Detection of Water and Ice on Bridge Structures by AC Impedance and Dielectric Relaxation Spectroscopy (Phase II)</td>
<td>John Evans, Department of Chemistry and Biochemistry (Duluth)</td>
<td>Engineering (Duluth)</td>
<td>In progress</td>
</tr>
<tr>
<td>Detection of Water and Ice on Bridge Structures by AC Impedance and Dielectric Relaxation Spectroscopy (Phase III)</td>
<td>John Evans, Department of Chemistry and Biochemistry (Duluth)</td>
<td>Engineering (Duluth)</td>
<td>In progress</td>
</tr>
<tr>
<td>Deployment and Field Testing of Novel Water and Ice Sensor Systems on Bridge Decks</td>
<td>Hongyi Chen, Department of Mechanical and Industrial Engineering (Duluth)</td>
<td>Engineering (Duluth)</td>
<td>New</td>
</tr>
<tr>
<td>Developing an Intelligent Decision Support System for the Proactive Implementation of Traffic Safety Strategies</td>
<td>Max Donath, Craig Shankwitz, and Michael Manser, Department of Mechanical Engineering</td>
<td>Engineering (Duluth)</td>
<td>New</td>
</tr>
<tr>
<td>Using Velocity Constraints to Enhance Carrier Phase GPS Robustness</td>
<td>Justin Graving and Michael Manser, Department of Mechanical Engineering</td>
<td>Engineering (Duluth)</td>
<td>New</td>
</tr>
<tr>
<td>Development of a Portable Work Zone Traffic Information System Based on DSRC and Bluetooth-Enabled Cell Phones</td>
<td>John Evans, Department of Chemistry and Biochemistry (Duluth)</td>
<td>Engineering (Duluth)</td>
<td>New</td>
</tr>
<tr>
<td>Development of an Accurate and Low-Cost GPS-Based Heading Determination System</td>
<td>Demoz Gebre-Egziabher, Department of Aerospace Engineering and Mechanics, and Craig Shankwitz, Department of Mechanical Engineering</td>
<td>Engineering (Duluth)</td>
<td>New</td>
</tr>
<tr>
<td>Deployment of a Proximity Warning System for Use Within Construction Work Zones to Notify Pedestrian Workers of Hazards</td>
<td>Demoz Gebre-Egziabher, Department of Aerospace Engineering and Mechanics, and Craig Shankwitz, Department of Mechanical Engineering</td>
<td>Engineering (Duluth)</td>
<td>New</td>
</tr>
<tr>
<td>Development of a Low-Cost Interface between Cell Phones and DSRC-Based Vehicle Unit for Efficient Use of VII Infrastructure</td>
<td>M. Imran Hayee, Department of Electrical and Computer Engineering (Duluth)</td>
<td>Engineering (Duluth)</td>
<td>In progress</td>
</tr>
<tr>
<td>Development of a Portable Work Zone Traffic Information System Based on DSRC and Bluetooth-Enabled Cell Phones</td>
<td>M. Imran Hayee, Department of Electrical and Computer Engineering (Duluth)</td>
<td>Engineering (Duluth)</td>
<td>In progress</td>
</tr>
<tr>
<td>Name</td>
<td>Department</td>
<td>Research Area</td>
<td>Status</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------------------------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>Eil Kwon</td>
<td>Department of Civil Engineering (Duluth)</td>
<td>Assessment of Capacity Estimation Methods for a Multi-lane Roundabout with Field Traffic Data</td>
<td>In progress</td>
</tr>
<tr>
<td>Taek Kwon</td>
<td>Department of Electrical and Computer Engineering (Duluth)</td>
<td>Development of Freeway Management and Computer Engineering (Duluth)</td>
<td>In progress</td>
</tr>
<tr>
<td>Eil Kwon</td>
<td>Department of Civil Engineering (Duluth)</td>
<td>Field Traffic Data Methods for a Multi-lane Roundabout with Assessment of Capacity Estimation</td>
<td>In progress</td>
</tr>
<tr>
<td>Taek Kwon</td>
<td>Department of Electrical and Computer Engineering (Duluth)</td>
<td>Portable Traffic Safety and Computer Engineering (Duluth)</td>
<td>Complete</td>
</tr>
<tr>
<td>Eil Kwon</td>
<td>Department of Civil Engineering (Duluth)</td>
<td>Portable Weigh-in-Motion (WIM) Systems for ITS Applications</td>
<td>Complete</td>
</tr>
<tr>
<td>Taek Kwon</td>
<td>Department of Electrical and Computer Engineering (Duluth)</td>
<td>Analysis of Practical Methods for Counting Vehicles with Flag Operators</td>
<td>Complete</td>
</tr>
<tr>
<td>Eil Kwon</td>
<td>Department of Civil Engineering (Duluth)</td>
<td>Portable Weigh-in-Motion (WIM) Systems for ITS Applications</td>
<td>Complete</td>
</tr>
<tr>
<td>Taek Kwon</td>
<td>Department of Electrical and Computer Engineering (Duluth)</td>
<td>Analysis of Practical Methods for Counting Vehicles with Flag Operators</td>
<td>Complete</td>
</tr>
<tr>
<td>Eil Kwon</td>
<td>Department of Civil Engineering (Duluth)</td>
<td>Portable Weigh-in-Motion (WIM) Systems for ITS Applications</td>
<td>Complete</td>
</tr>
<tr>
<td>Taek Kwon</td>
<td>Department of Electrical and Computer Engineering (Duluth)</td>
<td>Analysis of Practical Methods for Counting Vehicles with Flag Operators</td>
<td>Complete</td>
</tr>
<tr>
<td>Eil Kwon</td>
<td>Department of Civil Engineering (Duluth)</td>
<td>Portable Weigh-in-Motion (WIM) Systems for ITS Applications</td>
<td>Complete</td>
</tr>
<tr>
<td>Taek Kwon</td>
<td>Department of Electrical and Computer Engineering (Duluth)</td>
<td>Analysis of Practical Methods for Counting Vehicles with Flag Operators</td>
<td>Complete</td>
</tr>
<tr>
<td>Eil Kwon</td>
<td>Department of Civil Engineering (Duluth)</td>
<td>Portable Weigh-in-Motion (WIM) Systems for ITS Applications</td>
<td>Complete</td>
</tr>
<tr>
<td>Taek Kwon</td>
<td>Department of Electrical and Computer Engineering (Duluth)</td>
<td>Analysis of Practical Methods for Counting Vehicles with Flag Operators</td>
<td>Complete</td>
</tr>
<tr>
<td>Eil Kwon</td>
<td>Department of Civil Engineering (Duluth)</td>
<td>Portable Weigh-in-Motion (WIM) Systems for ITS Applications</td>
<td>Complete</td>
</tr>
<tr>
<td>Taek Kwon</td>
<td>Department of Electrical and Computer Engineering (Duluth)</td>
<td>Analysis of Practical Methods for Counting Vehicles with Flag Operators</td>
<td>Complete</td>
</tr>
<tr>
<td>Eil Kwon</td>
<td>Department of Civil Engineering (Duluth)</td>
<td>Portable Weigh-in-Motion (WIM) Systems for ITS Applications</td>
<td>Complete</td>
</tr>
</tbody>
</table>
Hua Tang, Department of Electrical and Computer Engineering (Duluth)
Development of a New Tracking System Based on CMOS Vision Processor Hardware (Phase II)
► Status: In progress

Hua Tang, Department of Electrical and Computer Engineering (Duluth)
A Tracking-Based Traffic Performance Measurement System for Roundabouts and Intersections
✔ Status: New

Peter Willemsen, Department of Computer Science (Duluth)
Snow Rendering for Interactive Snowplow Simulation—Improving Driver Ability to Avoid Collisions When Following a Snowplow
► Status: In progress

Peter Willemsen, Department of Computer Science (Duluth), Lee Zimmerman, Department of Electrical and Computer Engineering (Duluth), and Albert Yonas, Department of Child Development
Snow Rendering for Interactive Snowplow Simulation—Supporting Safety in Snowplow Design (Phase I)
► Status: In progress

Peter Willemsen, Department of Computer Science (Duluth), Lee Zimmerman, Department of Electrical and Computer Engineering (Duluth), and Albert Yonas, Department of Child Development (Duluth)
Snow Rendering for Interactive Snowplow Simulation—Supporting Safety in Snowplow Design (Phase II)
► Status: In progress

Gary Davis and John Hourdos, Department of Civil Engineering
Access to Destinations: Arterial Data Acquisition and Network-Wide Travel Time Estimation (Phase I)
✔ Status: Complete

Gary Davis and John Hourdos, Department of Civil Engineering
Access to Destinations: Streamlining the Arterial Data Acquisition and the Estimation of Network-Wide Travel Link Times
► Status: In progress

Gary Davis, John Hourdos, and Chen-Fu Liao, Department of Civil Engineering
Estimating the Crash Reduction and Vehicle Dynamic Effects of Flashing LED Stop Signs
✔ Status: New

Gary Davis and Henry Liu, Department of Civil Engineering
Using Detailed Signal and Detector Data to Investigate Intersection Crash Causation
► Status: In progress

Max Donath, Department of Mechanical Engineering
Aggregating VMT within Predefined Geographic Zones Using a Cellular Network
► Status: In progress

Max Donath, Department of Mechanical Engineering
Analysis of the Impact of Road Use for Alternate Transportation in Denali Park
► Status: In progress

Robert Feyen, Department of Mechanical and Industrial Engineering (Duluth)
Assessing Coordination between Agencies Involved in Traffic Incident Management
✔ Status: Complete

Demoz Gebre-Egziabher and Greg Nelson, Department of Aerospace Engineering and Mechanics
Analysis of Uninhabited Aerial Vehicles ITS Concept of Operations
► Status: In progress

Nikolas Geroliminis, formerly, Department of Civil Engineering
Investigation of Flash LADAR 3D Imaging Sensor Technology for Non-Intrusive Roadside Traffic Measures
► Status: Complete

John Hourdos, Department of Civil Engineering
Portable, Non-Intrusive Advance Warning Devices for Work Zones with or without Flag Operators
► Status: In progress

John Hourdos, Department of Civil Engineering, and Seraphin Chally Abou, Department of Mechanical and Industrial Engineering (Duluth)
Effectiveness of Urban Partnership Agreement (UPA) Measures in the I-35W Corridor
✔ Status: New

John Hourdos and Gary Davis, Department of Civil Engineering
TH-36 Full Closure Construction: Evaluation of Traffic Operations Alternatives
✔ Status: Complete

John Hourdos and Gary Davis, Department of Civil Engineering, and Nikolas Geroliminis, formerly, Department of Civil Engineering
Vehicle Probe-Based Real-Time Traffic Monitoring on Arterials
► Status: In progress

John Hourdos and Panos Michalopoulos, Department of Civil Engineering
Development of Next Generation Simulation Models for Twin Cities: Freeway Metro-Wide Simulation Model (Phase I)
► Status: In progress

David Levinson and Henry Liu, Department of Civil Engineering, and Kathleen Harder, College of Design
Traffic Flow and Road User Impacts of the Collapse of the I-35W Bridge Over the Mississippi River
► Status: In progress

Chen-Fu Liao, Department of Civil Engineering
Advanced System Analysis for Public Transit (ASAPT) Using Data-Driven Transit Performance Measures for Transit Network Analysis
► Status: In progress

Chen-Fu Liao, Department of Civil Engineering, and Michael Rakauskas, formerly, Department of Mechanical Engineering
Accessible Traffic Signals for Blind and Visually Impaired Pedestrians
► Status: In progress

Henry Liu, Department of Civil Engineering
Development of a Platoon-Priority Control Strategy and Smart Advance Warning Flashers for Isolated Intersections with High-Speed Approaches
✔ Status: Complete

Henry Liu, Department of Civil Engineering
Evaluation of Cell Phone Traffic Data
✔ Status: Complete

Henry Liu, Department of Civil Engineering
Real-Time Arterial Performance Monitoring System
✔ Status: Complete

Henry Liu, Department of Civil Engineering
Responding to the Unexpected: Development of a Dynamic Data-Driven Traffic Operation Model for Effective Evacuation
✔ Status: Complete

Chen-Fu Liao and Gary Davis, Department of Civil Engineering
Bus Signal Priority Based on GPS and Wireless Communications (Phase III)—Bus to Roadside Infrastructure Communication Framework for Intelligent Transportation
► Status: In progress

Chen-Fu Liao and Henry Liu, Department of Civil Engineering
31
Research

Henry Liu, Department of Civil Engineering
Further Development of the SMART-Signal System with the City of Eden Prairie
► Status: In progress

Henry Liu and David Levinson, Department of Civil Engineering
Disruption: Gauging Equilibration
► Status: In progress

Henry Liu and Chen-Fu Liao, Department of Civil Engineering
SMART-Signal: Systematic Monitoring of Arterial Road Traffic and Signals (Phase II)
► Status: In progress

Henry Liu and Panos Michalopoulos, Department of Civil Engineering
Development of Algorithms for Travel-Time-Based Traffic Signal Timing (Phase I)
► Status: In progress

Henry Liu and Panos Michalopoulos, Department of Civil Engineering
Development of the Next-Generation Metro-Wide Simulation Models for the Twin Cities’ Metropolitan Area: Mesoscopic Modeling
► Status: In progress

Panos Michalopoulos, Department of Civil Engineering
Transportable Low-Cost Traffic Data Collection Device for Rapid Deployment for Intersections and Arterials
► Status: Complete

Social and Economic Policy Issues Related to ITS

John Bryson, Barbara Crosby, and Melissa Stone, Humphrey Institute of Public Affairs
Technology and Collaboration in Effective Transportation Policy
► Status: Complete

John Bryson, Barbara Crosby, and Melissa Stone, Humphrey Institute of Public Affairs
From Start to Finish: Cross-Sector Collaboration and the Urban Partnership Agreement
► Status: In progress

Jason Cao and Frank Douma, Humphrey Institute of Public Affairs
Substitution between E-shopping and Travel: Evidence from the Twin Cities
► Status: In progress

Jason Cao and Lee Munnich, Humphrey Institute of Public Affairs
Benefit-Cost Analysis of Value Pricing: Case Study for MnPass
► Status: In progress

Frank Douma, Humphrey Institute of Public Affairs
ITS and Privacy: Developing New Rules for Virtual Roads
► Status: Complete

Frank Douma, Humphrey Institute of Public Affairs
ITS and Locational Privacy: Suggestions for Peaceful Coexistence
► Status: In progress

Thomas Horan, Humphrey Institute of Public Affairs
ITS and Safety Planning: ITS and EMS System Data Integration for Safety and Crisis Information and Decision-Making Systems
► Status: Complete

Thomas Horan and Benjamin Schooley, Humphrey Institute of Public Affairs
ITS and Transportation Safety: EMS System Data Integration to Improve Traffic Crash Emergency Response and Treatment (Phase II)
► Status: In progress

Thomas Horan and Benjamin Schooley, Humphrey Institute of Public Affairs
ITS and Transportation Safety: EMS System Data Integration to Improve Traffic Crash Emergency Response and Treatment (Phase III)
► Status: In progress

David Levinson, Department of Civil Engineering
The Role of Social Networks and Information and Communications Technology (ICT) on Destination Choice
► Status: Complete

Greg Lindsey, Humphrey Institute of Public Affairs
Understanding the Use of Nonmotorized Transportation Facilities through Application of Infrared and Radio-Frequency Technologies
► Status: In progress

Lee Munnich, Ferrol Robinson, and Zhao Zhirong, Humphrey Institute of Public Affairs
Implementing Distance-Based User Fees as a Replacement for the Fuel Tax
► Status: In progress

Carissa Schively Slotterback, Humphrey Institute of Public Affairs, and John Houdros, Department of Civil Engineering
Technology in Planning and Participatory Processes: Identifying New Synergies through Real World Application
► Status: In progress

Elizabeth Wilson, Humphrey Institute of Public Affairs, Kevin Krizek, University of Colorado (formerly, Humphrey Institute of Public Affairs), and Julian Marshall, Department of Civil Engineering
School Travel and the Implications for Advances in Transportation-Related Technology
► Status: In progress

Elizabeth Wilson, Humphrey Institute of Public Affairs, and Julian Marshall, Department of Civil Engineering
Decision Tools for Assessing Transportation Impacts of School Policy and School Choice
► Status: In progress